
30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 1

ICT MyMedia Project
2008-215006

Recommender Quickstart

17 June 2009

Public Document

30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 2

1 Contents
2 Target Audience .. 4

3 Introduction .. 4

4 How To Implement ... 4

4.1 Requirements .. 4

4.2 Scenario ... 4

4.3 Project creation ... 4

4.4 Importing the data .. 5

4.5 Getting Recommendations ... 7

4.6 Creating a UI .. 8

4.7 Advanced Scenarios .. 8

5 FAQs .. 13

30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 3

Project acronym: MyMedia

Project full title: Dynamic Personalization of Multimedia

Work Package: 2

Document title: Recommender Quickstart

Version: N/A

Official delivery date: N/A

Actual publication date: N/A

Type of document: Open Source Software and Documentation

Nature: Public

Authors: Rich Hanbidge, EMIC

Approved by: N/A

30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 4

2 Target Audience
The intended target audience of this document are consumers of the MyMediaProject software

framework.

See the MyMedia softare license, included at the root of the distribution, for terms of use.

3 Introduction
This document describes how to create a simple recommender system using the MyMediaProject

software framework.

4 How To Implement

4.1 Requirements
 A basic understanding of recommender systems

 A working knowledge of managed code, specifically C-Sharp

 Microsoft Visual Studio 2008

o Visual C# 2008 Express Edition (free)

o http://www.microsoft.com/express/download/

 Microsoft SQL Server Express Edition(free)

o http://www.microsoft.com/sqlserver/2005/en/us/express.aspx

o Premium editions of Sql Server can be used as well

 .Net Framework, Version 3.5 or equivalent (free)

o http://www.microsoft.com/downloads/details.aspx?FamilyID=333325fd-ae52-4e35-

b531-508d977d32a6&DisplayLang=en

 The MyMediaProject Recommender Framework

 http://www.mymediaproject.org/Framework.aspxSample MovieLens data

o http://www.grouplens.org/node/73

o Be sure to view the license in the README files to ensure use of the MovieLens data is

appropriate for your situation

4.2 Scenario
This sample will create a simple movie recommender, using the popular “MovieLens” data set. This

sample follows the “MovieLensRecommender” sample in the source code distribution.

4.3 Project creation
1. Start Visual Studio 2008

http://www.microsoft.com/express/download/
http://www.microsoft.com/sqlserver/2005/en/us/express.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=333325fd-ae52-4e35-b531-508d977d32a6&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=333325fd-ae52-4e35-b531-508d977d32a6&DisplayLang=en
http://www.mymediaproject.org/Framework.aspx
http://www.grouplens.org/node/73

30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 5

2. Create a new project called “MyMediaDemo”

a. Click ‘File’ -> ‘New Project’

b. Select ‘Console Application,’ or the project type of your choosing

c. As name Enter ‘MyMediaDemo’

3. Add a reference to ‘MyMediaProject.RecommenderSystem.Core.dll’

a. Go to the ‘Solution Explorer’

b. Right click on the ‘MyMediaDemo’-solution (not the project) and select ‘Add Reference’

c. Browse to the installation directory of the MyMediaProject Recommender Framework

d. Browse to ‘MyMediaProject.RecommenderSystem.Core.dll’ and click the ‘OK’ button to

reference this assembly.

4. Add a reference to ‘MyMediaProject.RecommenderSystem.Framework.dll’

a. Right click on the ‘MyMediaDemo’-solution (not the project) and select ‘Add Reference’

b. Browse to the installation directory of the MyMediaProject Recommender Framework

c. Browse to ‘MyMediaProject.RecommenderSystem.Framework.dll’ and click the ‘OK’

button to reference this assembly.

4.4 Importing the data

4.4.1 Creating the catalog factory

The recommender framework has a notion of a catalog (item) factory. This factory has access to the

internal catalog store. Once imported by the factory each item is automatically stored in databases for

persistence. Note that the framework has no information about the source of the data. A concrete

implementation of a catalog factory must inherit from ‘CatalogItemFactory’.

1. In the ‘Solution Explorer’ right click on the ‘Catalog’ folder and select ‘Add’ -> ‘Class’

2. Name the class ‘MovieLensDataFactory,” and have it inherit from

MyMediaProject.RecommenderSystem.Core.CatalogItemFactory.

3. In the ‘Solution Explorer’ double click on ‘MovieLensDataFactory.cs’

a. Create a new “Guid” for your CatalogItemFactory, along with a “string” describing the

class.

i. This guid and description must be passed to the CatalogItemFactory constructor

when the class is created.

b. Expose a method to import the data, called “ImportData” for this example.

i. The helper methods to interact with the database are provide by the

DataContext property exposed by the CatalogItemFactory base class your

importer has inherited from.

1. For every movie in the source data, use

CatalogItemFactory::DataContext::CreateItem to produce a new

CatalogItem class.

2. Associate the title to the class using the CatalogItem::AddTitle() method.

30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 6

ii. Once all of the CatalogItems have been added to the database, call the base

class method, CatalogItemFactory::SubmitChanges() to persist this data into the

MyMediaFramework data storage solution.

c. See

“RecommenderFramework\MovieLensRecommender\Catalog\MovieLensDataFactory.c

s” for a sample implementation.

4. For more detailed information, see the document, “MyMedia Framework How To

CatalogImporter”.

4.4.2 Importing Users

Users can be addd to the system in two ways; first, but calling methods directly on the Recommender

class (see below), or in bulk, as will be discussed now.

In the “ImportData” method, defined above, add additional functionality to insert users from the data

set.

1. For every user in the data set, create a new “User” class.

a. Set properties, as appropriate on the User class

2. Queue the User for insertion into the framework, by calling CatalogItemFactory::

DataContext::Users::InsertOnSubmit

3. Once all of the users are queued for insertion, call

CatalogItemFactory::DataContext::SubmitChanges to persist them to the storage solution.

4.4.3 Importing Rating Data

In the MyMediaFramework, all interactions between User and CatalogItems are considered

“UserActions.” UserAction is a base class for specific types of interactions. The “RatingAction” captures

a User’s explicit interest level in a CatalogItem. This is the appropriate type of UserAction to use for the

MovieLens data set.

Also in the “ImportData” method, defined above, add additional functionality to insert ratings from the

data set.

1. For ever rating in the data set, create a new RatingAction

a. Set the CatalogItem (in this case, the item ID directly from the dataset is sufficient)

b. Set the User (it is also appropriate here to simply use the User id from the dataset)

c. Finally, set the RatingValue.

2. Queue the RatingAction for insertion by calling

CatalogItemFactory::DataContext::UserActions::InsertOnSubmit

4. Once all of the ratings have been processed, call

CatalogItemFactory::DataContext::SubmitChanges to persist them to the storage solution.

a. Note; for large data sets, it may be necessary to submit subsets of the data, due to

memory constraints on your system. A good guideline is to insert after every 10-50K

entries.

30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 7

4.4.4 Creating the recommender class

The recommender class is the single point of contact between the application frontend and the

backend. It wraps the “real“recommender with its factory, flows and engines and only publishes the

function subset that is needed by the application. This class should inherit from the Recommender class

in the core framework.

1. In the ‘Solution Explorer’ right click on the ‘MyMediaDemo’-project and select ‘Add’ -> ‘Class’

2. Name the class ‘Recommender,’ and have it inherit from

MyMediaProject.RecommenderSystem.Core.Recommender

3. In the ‘Solution Explorer’ double click on ‘Recommender.cs’

a. The recommender class must define a unique Guid, which is used to define the default

storage options, as well as a string, providing a short description of the recommender.

4.4.5 The default database parameters can be overridden by modifying the

“DBConnectionString” property in the configuration. See section 4.7.1, SQL Server

Installations

The framework is designed to work with the free Microsoft Sql Server “Express” 2005 edition. Please

see the requirement section of this document for more details. It is important to note that Sql Express

has a database size limit of 4GB. Larger scale solutions will require a premium version of Sql.

Different editions of the database server can be used by setting the appropriate Configuration

information in the MyMedia.mmconf.xml file. Specifically the “DBConnectionString” property. See the

Recommender Configuration discussion, in section 4.7.2.

Further, the framework will support any other Sql-Compliant database, by setting the appropriate

connection information, per above.

i. Recommender Configuration, for more information on this topic.

b. See “\RecommenderFramework\MovieLensRecommender\Recommender.cs” for a

sample implementation.

4.5 Getting Recommendations
At this point, we have created the data importer, and a basic recommender class to expose the core

functionality. Now we will discuss how to generate recommendations for the user.

There are two basic components necessary for generating recommendations. These are “engines” and

“flows.” The engine class is the implementation of the algorithm used to determine what is interesting

to the user. The flow encapsulates the engine, along with other options, to abstract the

recommendation process. The flow concept allows for multiple recommendation approaches to exist in

the same application. This can be used, for example to support “A-B” testing to compare algorithms.

4.5.1 Flows

30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 8

The recommender “Flow” has two critical components. The hybridizer and the engine. The hybridizer

combines results from multiple engines, to produce recommendations. The engine or engines,

represent the algorithm used to generate recommendations.

For this simple example, we will use a single engine hybridizer, present in the framework. For the

engine, we will also use a framework provided “Matrix Factorization” engine. In the following steps we

will create a recommender flow, using a matrix factorization engine, and a single-engine hybridizer.

1. In the ‘Solution Explorer’ double click on ‘Recommender.cs’

2. In the recommender class, add a class member variable of type “Flow.”

3. In the recommender class, override the method called “Initialize”

a. Start with calling the base implementation of Initialize, using “base.Initialize()”. This will

perform necessary initialization of the framework.

b. Next, initialize the flow class member variable with a new Flow object

c. In the flow object, add a new MatrixFactorizationEngine to the flow, by using the

Flow.AddEngine method

d. Now add a SingleEngineHybridizer, by setting the Hybridizer property on the flow

e. Finally, register the flow with the recommender, using the “base.RegisterFlow” method

4. See “\RecommenderFramework\MovieLensRecommender\Recommender.cs” for a sample

implementation.

You have now added a recommender flow to your recommender class, which can be used to generate

recommendations.

4.5.2 Engines

For more information on engines, see the “MyMedia Framework How To Engine” document.

4.5.3 Generating Recommendations

At this point, you have created a recommender Flow, which encapsulates a recommendation approach,

with an Engin and Hybridizer. To get recommendations from the system, you simply call the

Recommender.Predict method, specifying the “FlowId” of the recommender flow you would like to use.

This will call the engine(s) registered in the flow to create a set of “Prediction” objects, which contain

the relevant information on the recommendations.

Care should be taken to restrict the catalog to only the relevant items, for performance reasons. For

example, this could restrict the movies to only those in a particular Genre.

4.5.3.1 For more information on flows, please see the detailed Database

Configuration

The database connection string used by the framework is configurable via the “DBConnectionString”

property in the MyMedia.mmconf.xml file. The database must be of the schema used by MyMedia.

30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 9

The default behavior is to connecto to an instance of “SqlExpress” running on the local machine. The

database name is produced by merging the program name of the Recommender instance, with the

program id. For example, “MovieLensRecommender.a53d4502-5da1-4dfe-81ff-cadf03588064”. By

default, this database will be created if it does not exist.

Flows discussion, section 4.7.2.1, in Advanced Scenarios.

4.5.4 Providing Feedback

New ratings or user behavior are added to the framework via the Recommender.ProcessFeedback

method. Simply create a new “UserAction” object, of the appropriate type. For explicit ratings, use the

“UserRating” Class.

For more information on flows, please see the detailed UserActions and Data discussion, section 4.7.6,

in Advanced Scenarios.

4.6 Creating a UI
The specifics of creating a recommender UI are beyond the scope of this document. However, a very

simple UI should provide a list of users, their rated items, and the predictions for those users. See the

MovieLensRecommender project for an “end-to-end” example.

4.7 Advanced Scenarios

4.7.1 SQL Server Installations

The framework is designed to work with the free Microsoft Sql Server “Express” 2005 edition. Please

see the requirement section of this document for more details. It is important to note that Sql Express

has a database size limit of 4GB. Larger scale solutions will require a premium version of Sql.

Different editions of the database server can be used by setting the appropriate Configuration

information in the MyMedia.mmconf.xml file. Specifically the “DBConnectionString” property. See the

Recommender Configuration discussion, in section 4.7.2.

Further, the framework will support any other Sql-Compliant database, by setting the appropriate

connection information, per above.

4.7.2 Recommender Configuration

The framework provides a configuration file for setting various database, proxy, and other settings. See

the “config” directory in any of the projects of the framework for the various configuration files. These

are of the format <FileName>.mmconf.xml.

To set application specific settings, a copy of the mmconf.xml file should be created in your application

project in a folder called “config.” This file can then be modified for your application, and copied to the

execution directory. See below for specific steps.

1. Create a project folder called “config” in your application project

30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 10

a. Right-Click on the project

i. Select Add->New Folder

ii. Name the folder “config”

b. Copy the appropriate mmconf.xml file(s) to this directory, and include them in your

project

i. Right click on the “config” folder

ii. Select Add->Existing Item

1. This will present you with a file explorer dialog, in which you can

navigate to the mmconf.xml files

c. Set each of the files with the “content” Build Action, and the Copy Always setting.

30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 11

d. Now, set each of the properties in the XML file to the appropriate values

i. Note – removing properties from this file is not allowed, and may cause

undesired results.

4.7.2.1 Database Configuration

The database connection string used by the framework is configurable via the “DBConnectionString”

property in the MyMedia.mmconf.xml file. The database must be of the schema used by MyMedia.

The default behavior is to connecto to an instance of “SqlExpress” running on the local machine. The

database name is produced by merging the program name of the Recommender instance, with the

program id. For example, “MovieLensRecommender.a53d4502-5da1-4dfe-81ff-cadf03588064”. By

default, this database will be created if it does not exist.

4.7.3 Flows

The recommender Flow encapsulates a recommendation strategy, and the framework supports many

Flows in the same application at the same time. This can be a powerful tool for “A-B” testing where

users are randomly assigned different recommendation algorithms as an advanced algorithm

assessment procedure. This can also be used to apply different recommendation algorithms at different

times.

In addition to the previously discussed features, the Flow also exposes two other important concepts. A

“PreFilter” and “PostFilter.”

30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 12

The PreFilter is a fixed CatalogItem query restriction, executed before the query is passed to the

recommendation Engines. This acts as a filter for items which are available for recommendation in a

given flow. For example, this can be used to restrict a television recommender to the shows which are

available in the next 2 hours.

The PostFilter is a fixed result filter, which limits the Prediction objects returned by the

Recommender.Predict method on that particular Flow instance. This can be used to limit the

Predictions to those the user will really like, but only returning high values.

To add either of these filters to the Flow, simply call the appropriate Add* method, passing in a class

which implements the IPreFilter or IPostFilter interface.

4.7.4 Hybridization

Hybridization is an approach to leverage the strength of various recommendation engines. This allows

results from multiple engines to be combined to produce a better result. The framework allows new

and plugable hybridization methods to be implemented to combine engine results.

To create a new Hybridizer, simply create a call implementing the IHybridizer interface. This can then be

applied to the Flow.Hybridizer property on the Flow object.

4.7.5 Users

The User class provides a number of Properties relevant to applications and field trails. The

automatically generated documentation in the software descripes these in detail.

The User class also exposes the notion of “UserProperty” to extend this further. This allows for arbitrary

<name,value> pairs to be associated with a given User object. This could be extenstions to the

framework such as phone numbers or other information.

To use this, simply define a well-known name string, such as “UserPhoneNumber,” which represents the

property key. The value can then be any string, and will be persisted in the framework database.

4.7.6 UserActions and Data

A UserAction is the base object representing a User interaction with the system. There are a number of

derived classes, such as RatingAction, which represent specific types of actions. The software

documentation describes these in full detail.

The framework also provides an extensibility mechanism of <name,value> pairs to specifiy new type of

UserActions. This is the OtherAction class. To create a new type of action, simply create an OtherAction

class, with a well defined name, which is used as the key. The actionProperty can be any string,

representing detailed information about that interaction.

30 June 2009 Public Document

MyMedia ICT-2008-215006 Page | 13

5 FAQs

5.1.1 How to show the Solution Window?

Click on ‘View’ -> ‘Solution Explorer’

5.1.2 What is the difference between a project and a solution?

A solution can contain multiple projects. In Visual Studio a project must be a member of a solution or

Visual Studio will create a default solution with the same name. In the ‘Solution Explorer’ the solution

item is always the root Element. All projects that are member of the solution are listed at the hierarchy

level of the tree.

5.1.3 How to switch to an use Quick Edit Mode in a command console window

1. Right click on the header of the window and choose ‘Properties’

2. Navigate to the ‘Options’ tab and check Quick Edit Mode

To copy in the Quick Edit mode select the text you want to copy and hit Enter/Return. Whenever you

want to paste the string again click the right mouse button. The text will be pasted to the current text

cursor location.

As the standard buffer of the console output is only 300 line, it might be necessary to increase it:

1. Right click on the header of the window and choose ‘Properties’

2. Navigate to the ‘Layout’ tab and set the screen buffer size height to a bigger value (e.g. 900)

